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1 Introduction

The computation of Lyapunov quantities is related to its importance in engineering and me-
chanics of the question on the behaviour of a dynamical system near to the boundary of a
stability domain. From (Bautin, 1949) one varies “dangerous” or “safe” limits, i.e. a small
alteration of which implies a small (invertible) or noninvertible alterations of the system sta-
tus correspondingly. Such alterations parallel, for example, to condition of “hard” or “soft”
excitations of fluctuations of the system, as shown by Andronov (1966). The development of
methods of computation and analysis of Lyapunov quantities (or focus values, Lyapunov coef-
ficients, Poincare-Lyapunov constants) was greatly encouraged by firstly as a pure mathematic
problems (such as investigation of stability in critical case of two purely imaginary roots of
the first approximation system, Hilbert’s 16th problem, cyclicity problem, and distinguishing
between center and focus) and then as to the applied problems (such as the investigation of
boundaries of domain of stability and excitation of oscillations). Poincare (1885) and Lyapunov
(1966) in their classical works for the analysis of system, conducted the linking of neighbouring
boundary of the stability domain and advanced the technique of calculation of the so-called Lya-
punov coefficients, (or Lyapunov quantities, focus values, Poincare-Lyapunov constants), which
determine the system behavior in the region of the boundary. This method likewise permits
us successfully to study the bifurcation of the birth of small cycles (Chavarriga & Grau, 2003;
Gine, 2007, Leonov, 2007, 2008), and Yu and Chen (2013). In this work, We find the general
form of all the focal values ηk (k is even and k ≥ 2) and the Lyapunov function V (x, y) for the
lopsided system degree eight. As the type for find the maximum number of limit cycles which
can be bifurcate out of the origin and the necessary and sufficient conditions for the existence of
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center we need to compute the focal values η2k+2, the Lyapunov quantities L(k) and Lyapunov
function V (x, y).

2 Focal values and Laypunov function for the lopsided system
in degree eight

In this section, we introduce the technique of finding the general form of facal values η2k and
Layapunov function V (x, y) for as the type for find the maximum number of limit cycles which
can be bifurcate out of the origin and the necessary and sufficient conditions for the existence
of center, we need to compute the focal values η2k+2, Lyapunov quantities L(k) and Lyapunov
function V (x, y). As the way to evaluate the general form for the Lopsided system in degree
n. We describe some concepts that we shall need about the related facts and ideas. Which we
started by definition of the lopsided system as the following

Definition 1. (Gine & Santallusia, 2001)
Suppose that the origin of the system

ẋ = λx+ y

ẏ = −x+ λy +Qn(x, y), (1)

where Qn(x, y) is homogeneous polynomial of degree n and λ is parameter and

Qn(x, y) =
n∑

i=0

aix
n−iyi.

Definition 2. A function V (x, y) is called a Lyapunov function for a system

ẋ = λx+ y + P (x, y),

ẏ = −x+ λy +Q(x, y),

where P (x, y) and Q(x, y) are polynomial in the degree n,m respectively. If it satisfies the
following conditions:

1. V (0, 0) = 0;

2. V (x, y) > 0 in some neighbourhood of the origin;

3. dV
dt = V̇ is of constant sign in some neighbourhood of the origin.

Now the function V in a neighbourhood of the origin is such that its rate of change along
orbits is of the form

V̇ (x, y) =
∞∑
k=1

η2kr
2k, (2)

where r2 = x2 + y2. The coefficients η2k are the focal values and they are polynomials in λ and
the coefficients P (x, y) and Q(x, y). It is known that the origin is stable or unstable according
to whether the first non-zero focal value is negative or positive, and that the origin is a center
if all the focal values are zero.

What we really need are the so-called Lyapunov quantities L(0), L(1), . . . , L(K), these are
the non-zero expressions obtained by calculating each η2k under the condition η2 = η4 = . . . =
η2k−2 = 0. Then the origin is a center if all the Lyapunov quantities are zero. The origin of (1)
is said to be a fine focus of order k if η2 = η4 = . . . = η2k = 0, but η2k+2 ̸= 0. In general L(k) is
derived from η2k+2, but it may happen that a reduced focal value is necessarily zero, in which
case it does not contribute a Lyapunov quantity.
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In this work we choose the lopsided system of degree eight and the parameter λ converse to
zero as an example to compute the general form of both facal values η2k and Lyapunov function
V (x, y).

The Lyapunov function V (x, y) can be written in the form

V(x,y) =

∞∑
k=2

vk

and

vk =
k∑

i=0

vk−i,ix
k−iyi, (3)

where v2 = x2+y2

2 and vk is a homogeneous polynomials of degree k ≥ 3, with unknown coeffi-
cients vk−i,ii+ j = k, i, j ≥ 0. For convenience, we say that vk−i,i is an even or odd coefficient
according to whether i is even or odd.

Our main result is stated in in the following Theorem where the coefficients vk−i,ii+ j = k, i, j ≥
0. and the focal values ηk are given.

Theorem 1. For a lopsided system of degree eight, we have

1. The coefficients vk−i,i has the following form

(a) for odd coefficients we have

vk−i,i =

∑ (i−1)
2

j=0 (k − (2j + 1))!!(2j − 1)!!
(
ψ2j −

( k
2
j

)
ηk

)
(k − i)!!i!!

(b) and, for even coefficients we have

vk−i,i =

∑[ k−1
2

]
i
2

(k − (2j + 2))!!j!!ψ2j+1

(k − i)!!i!!
.

2. The focal values are given by the following formulas

ηk =

∑ k
2
j=0(k − (2j + 1))!!(2j − 1)!!ψ2j∑ k
2
j=0(k − (2j + 1))!!(2j − 1)!!

( k
2
j

) ,
where k (even) and ≥ 4. and

ψj =

j+1∑
i=0

iaj−i+1vk−7−i,i.

Proof. Note that from the fact that V (x, y) is given as follows,

V(x,y) =
∞∑
k=2

vk

the derivative of Lyapunov function V (x, y) with respect to the system (1) is given by

V̇ =
∂V (x, y)

∂x
ẋ+

∂V (x, y)

∂y
ẏ,

= (x+ (v3)x + . . .)(λx+ y) + (y + (v3)y + . . .)(−x+ λy +Q8(x, y).
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Let Dk be the terms of degree k in V̇ (x, y), by direct substitution in the system (1), we get

Dk = [y
∂vk
∂x

− x
∂vk
∂y

] + [Q8
∂vk−7

∂y
]. (4)

The idea is to choose the coefficients vk−j,j in vk and the quantities ηk so that

Dk =

{
0 if k is odd

ηk(x
2 + y2)k/2 if k is even

(5)

When k is odd, the requirement Dk = 0 is equivalent to solve a set of k + 1 unknown and
the coefficients arising in the original differential equations.

These k + 1 equations can be uncoupled into two sets of k+1
2 equations, one set determines

the odd coefficients of the vk, and the other determines the even coefficients of vk.

When k is even, k = 2m, the requirement in the second part in (5) gives k+1 linear equations
for ηk and the k+1 coefficients of vk. These equations also can be uncoupled into two sets: k

2 +1

equations for ηk and k
2 odd coefficients of vk, and

k
2 equations for the k

2 + 1 even coefficients of
vk. Then the even coefficients of vk are uniquely determined under the supplementary conditions
vj,j = 0 if j is even and vj+1,j−1 + vj−1,j+1 = 0 if j is odd.

Now note that

∂vk
∂x

=
k−1∑
i=0

(k − i)vk−i,ix
k−1−iyi, (6)

∂vk
∂y

=
k∑

i=1

ivk−i,ix
k−iyi−1. (7)

Therefore

Q8
∂vk−7

∂y
=

8∑
i=0

aix
8−iyi

k−7∑
i=0

jvk−5−j,jx
k−5−j−iyi−1

=

8∑
i=0

k−7∑
j=1

jaivk−7−j,jx
k+1+i−jyi+j−1. (8)

With the convention that vk−j,j = 0 if j < 0 or k − j < 0.

These last equations in (4) implies

Dk = −y∂vk
∂x

− x
∂vk
∂y

+
8∑

i=0

k−7∑
j=1

jaivk−7−j,jx
k+1+i−jyi+j−1.

Now using (6-7) we obtain

Dk =

k−1∑
i=0

(k − i)vk−i,ix
k−i−1yi+1 −

k∑
i=1

ivk−i,ix
k−i+1yi−1

+
8∑

i=0

k−7∑
j=1

jaivk−7−j,jx
k+1+i−jyi+j−1.

(9)

We will develop the three terms in Dk each separately
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1. The change of index m = i+ 1 in the first sum in Dk implies

k−1∑
i=0

(k − i)vk−i,ix
k−i−1yi+1 =

k∑
m=1

(k − (m− 1))vk−(m−1),m−1x
k−mym.

Since vk−j,j = 0 if j < 0 or k − j < 0, the first sum becomes

k−1∑
i=0

(k − i)vk−i,ix
k−i−1yi+1 =

k∑
m=0

(k −m+ 1)vk−m+1,m−1x
k−mym. (10)

2. If we take m = i− 1 in the second sum of Dk, we obtain

k∑
i=1

ivk−i,ix
k−i+1yi−1 =

k−1∑
m=0

(m+ 1)vk−1−m,m+1x
k−mym. (11)

3. In the last sum of Dk we take the index change m = i+ j − 1, then we obtain

8∑
i=0

k−7∑
j=1

jvk−5−i,ix
k+i−j+1yi+j−1 =

k−7∑
j=0

j+7∑
m=j−1

jam−j+1vk−7+j,jx
k−mym.

Developing the sum in the right-hand side and grouping the terms multiplying xk−iyi for
i = 0, 1, . . . , k, this sum can be written

j+7∑
m=j−1

k−7∑
j=0

jam−j+1vk−7−j,jx
k−mym =

k∑
i=0

ψix
k−iyi, (12)

where

ψj =

j+1∑
m=0

maj−m+1vk−7−m,m. (13)

By substituting equations (10),(11) and (12) in equation (9), and we becomes,

Dk =
k∑

i=0

(k − i+ 1)vk−i+1,i−1x
k−iyi −

k−1∑
i=0

(i+ 1)vk−i−1,i+1x
k−iyi +

k∑
i=0

ψix
k−iyi

=

{
0 if k is odd∑ k

2
i=0

( k
2
i
2

)
ηkx

2(k−i)y2i if k is even.
(14)

If k is even we have

Dk = v1,k−1y
k − vk−1,1x

k +
k−1∑
i=1

[(k − i+ 1)vk−i+1,i−1 − (i+ 1)vk−i−1,i+1]x
k−iyi +

k∑
i=0

ψix
k−iyi

=

k
2∑

i=0

(k
2
i
2

)
ηkx

2(k−i)y2i.
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Thus,

−vk−1,1 + ψ0 =

(k
2

0

)
ηk,

(k − i+ 1)vk−i+1,i−1 − (i+ 1)vk−i−1,i+1 + ψi =

(k
2
i
2

)
ηk, i = 2, 4, · · · , k − 2,with i is even

(k − i+ 1)vk−i+1,i−1 − (i+ 1)vk−i−1,i+1 + ψi = 0, i = 1, 3, · · · , k − 1,with i is odd

v1,k−1 + ψk =

(k
2
k
2

)
ηk. (15)

This implies

vk−1,1 = −
(k

2

0

)
ηk + ψ0, (16)

and

v1,k−1 = −ψk (17)

vk−i−1,i+1 =
1

i+ 1

[
ψi −

(k
2
i
2

)
ηk + (k − i+ 1)vk−i+1,i−1

]
.

Then if m = i− 1

vk−m,m =
1

m

[
ψm−1 −

( k
2

m−1
2

)
ηk + (k −m+ 2)vk−m+2,m−2

]
,m = 1, 3, · · · , k − 1,with m is od.

(18)
and for

vk−i+1,i−1 =
1

k − i+ 1
[−Ψi + (i+ 1)vk−i−1,i+1] .

Then if we replace i by i+ 1 we obtain

vk−i,i =
1

k − i
[−ψi+1 + (i+ 2)vk−i−2,i+2] , i = 2, 4, · · · , k − 2,with i is even. (19)

If k is odd then

Dk =
k∑

i=1

(k − i+ 1)vk−i+1,i−1x
k−iyi −

k−1∑
i=0

(i+ 1)vk−i−1,i+1x
k−iyi +

k∑
i=0

ψix
k−iyi.

= 0

Using the similar previous method, then we got the following set of equations

vk−1,1 = ψ0, (20)

v1,k−1 = −ψk, (21)

vk−i,i =
−1

i
[ψi−1 − (k − i+ 2)vk−i+2,i−2], (22)

and

vk−i,i =
1

k − i
[ψi+1 + (i+ 2)vk−i−2,i+2]. (23)

To continue the proof of the theorem we needed to show the following result
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Lemma 1. If k is odd and i is odd from i = 1, 2, . . . , k then

vk−i,i =

∑ i−1
2

j=0(k − (2j + 1))!!(2j − 1)ψ2j

(k − i)!!i!!
. (24)

Proof. We will show this result using a proof by induction. For i = 1 we have

vk−1,1 =
(k − 1)!!(−1)!!ψ0

(k − 1)!!1!!
,

Suppose that formula (24) is true for i = d− 2

vk−d+2,d−2 =

∑ d−3
2

j=0 (k − (2j + 1))!!(2j − 1)!!ψ2j

(k − d+ 2)!!(d− 2)!!
,

We must show that it is true for i = d, from equation (22) we have

vk−d,d =
−1

d
[ψd−1 − (k − d+ 2)vk−d+2,d−2] ,

=
−1

d

ψd−1 − (k − d+ 2)

∑ d−3
2

j=0 (k − (2j + 1))!!(2j − 1)!!ψ2j

(k − d+ 2)!!(d− 2)!!

 ,
=

−1

d

ψd−1 −

d−3
2∑

j=0

(k − (2j + 1))!!(2j − 1)!!ψ2j

(k − d)!!(d− 2)!!

 ,
= −

(k − d)!!(d− 2)!!ψd−1 −
∑ (d−3)

2
j=0 (k − (2j + 1))!!(2j − 1)!!ψ2j

(k − d)!!d!!
,

=

∑ d−1
2

j=0 (k − (2j + 1))!!(2j − 1)!!ψ2j

(k − d)!!d!!
.

So,

vk−i,i =

∑ i−1
2

j=0(k − (2j + 1))!!(2j − 1)!!ψ2j

(k − i)!!i!!
,

We have also the following result

Lemma 2. If k is even and i is odd, from i =, 1, 2, . . . , k − 1 then

vk−i,i =

∑ i−1
2

j=0(k − (2j + 1))!!(2j − 1)!!(ψ2j −
( k

2
j

)
ηk)

(k − i)!!i!!
.

Proof. Again, we show this result by induction. For we have i = 1

vk−1,1 =
(k − 1)!!(−1)!!(ψ0 −

( k
2
0

)
ηk)

(k − 1)!!1!!
.

= −ψ0 +

(k
2

0

)
ηk.

Suppose that it’s true for i = d− 2

vk−d+2,d−2 =

∑ i−3
2

j=0(k − (2j + 1))!!(2j − 1)!!(ψ2j −
( k

2
j

)
ηk)

(k − d+ 2)!!(d− 2)!!
.
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Consider the case i = d, from equation (18) we have

vk−d,d =
−1

d

[
ψd−1 −

( k
2

d−1
2

)
ηk − (k − d+ 2)vk−d+2,d−2

]

=
−1

d

ψd−1 −
( k

2
d−1
2

)
ηk − (k − d+ 2)

∑ i−3
2

j=0(k − (2j + 1))!!(2j − 1)!!
(
ψ2j −

( k
2
j

)
ηk

)
(k − d+ 2)!!(d− 2)!!


=

−1

d

ψd−1 −
( k

2
d−1
2

)
ηk −

∑ i−3
2

j=0(k − (2j + 1))!!(2j − 1)!!
(
ψ2j −

( k
2
j

)
ηk

)
(k − d)!!(d− 2)!!



= −
(k − d)!!(d− 2)!!

(
ψd−1 −

( k
2

d−1
2

)
ηk

)
−
∑ i−3

2
j=0(k − (2j + 1))!!(2j − 1)!!

(
ψ2j −

( k
2
j

)
ηk

)
d(k − d)!!(d− 2)!!

=

∑ d−1
2

j=0 (k − (2j + 1))!!(2j − 1)!!
(
ψ2j −

( k
2
j

)
ηk

)
(k − d)!!d!!

.

So,

vk−i,i =

∑ i−1
2

j=0(k − (2j + 1))!!(2j − 1)!!
(
ψ2j −

( k
2
j

)
ηk

)
(k − i)!!i!!

.

We use also a proof by induction to show the following result

Lemma 3. If k is even or odd and i even from i = 0, 1, 2, . . . , k then

vk−i,i =

∑⌈ k−1
2

⌉
j= i

2

(k − (2j + 2))!!2j!!ψ2j+1

(k − i)!!i!!
.

Proof. We have for i = k

v0,k =

∑⌈ k−1
2

⌉
j= k

2

(k − (2j + 2)!!2j!!ψ2j+1)

0!!k!!

=
(−2)!!k!!ψk+1 + (−1)!!(k − 1)!!ψk

k!!
= Ak,

where Ak is any constant.

Suppose it’s true for i = d+ 2

vk−d−2,d+2 =

∑⌈ k−1
2

⌉
j= d+2

2

(k − (2j + 2)!!2j!!ψ2j+1)

(k − d− 2)!!(d+ 2)!!
.

128



H.W. SALIH, A. NACHAOUI: COMPUTING GENERAL FORM OF THE FOCAL...

To show that it’s true for i = d, by using equation19 we obtain,

vk−d,d =
1

k − d
[ψd+1 + (d+ 2)vk−d−2,d+2]

=
1

k − d
[ψd+1 + (d+ 2)

∑⌈ (k−1)
2

⌉
j= d+2

2

(k − (2j + 2)!!2j!!ψ2j+1)

(k − d− 2)!!(d+ 2)!!
]

=
(k − d)!!d!!ψd+1 +

∑⌈ k−1
2

⌉
j= d+2

2

(k − (2j + 2)!!2j!!ψ2j+1)

(k − d)!!d!!

=

∑⌈ k−1
2

⌉
j= d

2

(k − (2j + 2)!!2j!!ψ2j+1)

(k − d)!!d!!
.

So,

vk−i,i =

∑⌈ k−1
2

⌉
j= i

2

(k − (2j + 2)!!2j!!ψ2j+1)

(k − i)!!i!!
.

Now, return to the proof of Theorem 1. The results of Lemma 1, Lemma 2 and lemma 3
cover cases (a) and (b) in Theorem 1, thus the its first part is proved.

Turn now to the second part of Theorem 1 to prove the formula giving ηk.
From Lamma 2, we have

vk−i,i =

∑ i−1
2

j=0(k − (2j + 1))!!(2j − 1)!!(ψ2j −
( k

2
j

)
ηk)

(k − i)!!i!!
.

After arranging the equation we get,

(k − i)!!i!!vk−i,i =

i−1
2∑

j=0

(k − (2j + 1))!!(2j − 1)!!

(
ψ2j −

(k
2

j

)
ηk

)

=

i−1
2∑

j=0

(k − (2j + 1))!!(2j − 1)!!ψ2j −

i−1
2∑

j=0

(k − (2j + 1))!!(2j − 1)!!

(k
2

j

)
ηk.

Thus we obtain

(k − i)!!i!!vk−i,i + ηk

i−1
2∑

j=0

(k − (2j + 1))!!(2j − 1)!!

(k
2

j

)
=

i−1
2∑

j=0

(k − (2j + 1))!!(2j − 1)!!ψ2j .

Taking i = k + 1, which give i−1
2 = k

2 in the last equation we obtain

0 + ηk

k
2∑

j=0

(k − (2j + 1))!!(2j − 1)!!

(k
2

j

)

=

k
2∑

j=0

(k − (2j + 1))!!(2j − 1)!!ψ2j .

So,

ηk =

∑ k
2
j=0(k − (2j + 1))!!(2j − 1)!!ψ2j∑ k
2
j=0(k − (2j + 1))!!(2j − 1)!!

( k
2
j

) .
Which completes the proof of the Theorem 1.
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3 Conclusion

In this paper, a planer autonomous lopsided system of degree eight been studied. Using the
classical method of Lyapunov-Poincare, We derived a general form of all the focal values ηk (k
is even and k ≥ 2) and the Lyapunov function V (x, y) for this lopsided system of degree eight.
Thus the Lyaponov quantities L(k) can be easily derived and used for the study of the stability
of a general dynamic system and calculate the maximum number of limit cycles which can be
bifurcate out of the origin for this type of lopsided system.
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